Imposing constraints on network underlying logic to identify functional subgraphs

Bertrand Miannay

Equipe MeForBio, LS2N
Equipe 11, CRCINA

Directeur de thèse : Olivier Roux (LS2N, Nantes)
Co-encadrant : Stéphane Minvielle (CRCINA, Nantes)
Co-encadrante : Carito Guziolowski (LS2N, Nantes)
Co-encadrante : Florence Magrangeas (CRCINA, Nantes)

May 11, 2017
Summary

1 Context

2 Method
- Overview
- Formalism and implementation
- Components analysis
- Space solution reduction

3 Application
- Data and regulatory network
- Perfect colorations generation
- Components analysis

4 Conclusion & perspective
Historical

- Genes expression measure:
 - Decrease of cost/time during last 2 decades.
 - Used to compare expression profiles [LG06, PJvdR+99].
- Biological knowledge:
 - Increase of knowledge on interactions between biological entities and their roles.
 - Formalization in databases (KEGG, GO, NCI-PID, CBN, etc.).

Accumulated regulatory knowledge and experimental observations.

Modelization

- Used for cellular phenomenas study [KDS+16], disease research [LLX+13, Nev01], bio-production optimization [Ate15], etc.
- Cannot work with large amounts of data
- Need pre-selection of data and network by researchers
Summary

1. Context

2. Method
 - Overview
 - Formalism and implementation
 - Components analysis
 - Space solution reduction

3. Application
 - Data and regulatory network
 - Perfect colorations generation
 - Components analysis

4. Conclusion & perspective
Input/output

- From a regulatory network ⇒ The entities strongly associated merged in **components**
- From a set of observations ⇒ **Set of components** which could be used for next analysis.

Specificity

- Method based on graph coloring approaches [TCSR+15]
- Research of the “perfect colorations”
- Implemented in ASP (Answer Set Programming)
Instanciation

Graph: Set of *oriented, signed* (activator or inhibitor), *weighted edges* between nodes

Target: A node with at least, one predecessor (or regulator).

Candidate solutions generation

Colored graph: A graph in which each node is associated to a sign: up or down
Constraint

Consistent target coloring: A colored target, which is explained by at least one predecessor’s coloration.

Perfect target coloring: A colored target, which is explained by all predecessor’s coloration.

Imperfect weighted regulator: Weight of the edge between an imperfect target and its inconsistent regulator.

Diagram:

- **a)**
 - Consistent node coloring: X ✓ ✓ ✓
 - Perfect target coloring: X X X ✓
 - Imperfect weighted regulator: 3 1 2 0

- **b)**
 - Consistent node coloring: ✓ ✓ ✓ ✓
 - Perfect target coloring: X X X ✓
 - Imperfect weighted regulator: 3 1 2 0

- **c)**
 - Consistent node coloring: ✓ ✓ ✓ ✓
 - Perfect target coloring: X X X ✓
 - Imperfect weighted regulator: 3 1 2 0

- **d)**
 - Consistent node coloring: ✓ ✓ ✓ ✓
 - Perfect target coloring: X X X ✓
 - Imperfect weighted regulator: 3 1 2 0
Optimization

1. **Inconsistency minimization**: Colored graphs with the minimal number of inconsistent targets.
2. **Imperfect node coloring minimization**: Colored graph with the minimal number of imperfect targets.
3. **Imperfect weighted regulator minimization**: Colored graphs with the minimal sum of imperfect weighted regulator components.

Components identification

Component: set of nodes with correlated (positive or negative) coloration in perfect solutions.

<table>
<thead>
<tr>
<th>coloration 1</th>
<th>node</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>coloration 2</td>
<td></td>
<td>up</td>
<td>down</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>coloration 3</td>
<td></td>
<td>down</td>
<td>up</td>
<td>up</td>
<td>down</td>
</tr>
<tr>
<td>coloration 4</td>
<td></td>
<td>down</td>
<td>down</td>
<td>down</td>
<td>up</td>
</tr>
</tbody>
</table>

Example

When B is up (down), C is up (down) too \Rightarrow Positive correlation.
When B is up (down), D is down (up) \Rightarrow Negative correlation.

Component syntax: "B +, C +, D -"
Maximal similarity computing

Component configurations : Two possibilities of colorations for a component.

Maximal similarity (MS) : For a set of observation (nodes associated to signs) and a component : the maximal percentage of observed nodes in the component with the same sign as in the configurations.

Toy example

Configuration : Component : "B +, C +, D +, E +, F +, G +"

- (B,up), (C,up), (D,up), (E,up), (F,up), (G,up)
- (B,down), (C,down), (D,down), (E,down), (F,down), (G,down)

Observations : (B,up), (C,up), (D,up), (E, down)

MS = $\frac{3}{4}$
Coloring property

Symmetric reduction: A colored graph and its reverse coloring (up ⇔ down) have the same optimization scores.

Topological property

Consistent coloring: Identification of nodes which will have a sign correlation in consistent solutions (Figure 1-a)

Imperfect coloring: Identification of nodes which will have a sign correlation in candidate solutions with minimized imperfect colorations (Figure 1-b)

Edges balance: Deletion of balanced edges (Figure 1-c)

Figure: Patterns searched by the 3 reductions methods used in this study. a: nodes correlated in consistent solution. b: nodes correlated sharing the same target. c: edges with same weight, root, target and opposite signs.
Summary

1 Context

2 Method
- Overview
- Formalism and implementation
- Components analysis
- Space solution reduction

3 Application
- Data and regulatory network
- Perfect colorations generation
- Components analysis

4 Conclusion & perspective
Context

- Analysis of genes expression data from Multiple myeloma myeloma patients with regulatory network.

Data

Gene expression profiles (GEP) from:
- 602 multiple myeloma patients (myeloma cells: MM)
- 9 healthy donors (normal plasma cells: NPC).

Identification for each GEP of the over-expressed (up) and under-expressed (down) genes.

Regulatory network

From Pathway Interaction database (PID)
- Extraction of the downstream events from three signaling pathways (IL6/IL6-R, IGF1/IGF1-R and CD40) [Kle10] to the variant genes

Generation of an induced subgraph from NCI-PID, containing 2269 nodes, 2683 edges and connecting 529 variant genes.
Graph reduction

- Consistent coloring, Imperfect coloring, Edges balance reductions
- New graph with 193 nodes 389 edges

Table: Computation time.

<table>
<thead>
<tr>
<th>Graph</th>
<th>number of nodes</th>
<th>number of edges</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generated graph</td>
<td>2269</td>
<td>2683</td>
<td>72',12"</td>
</tr>
<tr>
<td>Reduced graph</td>
<td>193</td>
<td>389</td>
<td>14"</td>
</tr>
</tbody>
</table>

Perfect solutions and components identification

- **16834** coloring model
- 15 components identified from the regulatory network
- Only **2 components (2 and 6)** include more than one node.
Components validation and specification

- Computing then comparison between MS^MC and MS^{NPC} for each component
- Only component 2 is statically different between MC and NPC.

Biological analysis: gene ontology

- Genes in the component 2 are strongly associated to cancer pathways.
- Genes in the component 6 are not associated to specific pathway

Figure: MS comparison between Normal Plasma Cells and Myeloma Cells
Summary

1. Context

2. Method
 - Overview
 - Formalism and implementation
 - Components analysis
 - Space solution reduction

3. Application
 - Data and regulatory network
 - Perfect colorations generation
 - Components analysis

4. Conclusion & perspective
Conclusion

- Identification of functional subgraphs/components from a regulatory network.
- Identification of specific components from dataset

Perspective

- Use other database (trrust, causal bionet, etc.)
- Improve topological reduction
- Identification of specific components to sub-type of MM patient (poor/good prognosis)
Merci de votre attention
Références I

Ozlem Ates.
Systems Biology of Microbial Exopolysaccharides Production.

Aristotelis Kittas, Aurélien Delobelle, Sabrina Schmitt, Kai Breuhahn, Carito Guziolowski, and Niels Grabe.
Directed random walks and constraint programming reveal active pathways in hepatocyte growth factor signaling.

Bernard Klein.
Positioning NK-kappaB in multiple myeloma.

Tim Lenoir and Eric Giannella.
The emergence and diffusion of DNA microarray technology.

Wei Liu, Chunquan Li, Yanjun Xu, Haixiu Yang, Qianlan Yao, Junwei Han, Desi Shang, Chunlong Zhang, Fei Su, Xiaoxi Li, Yun Xiao, Fan Zhang, Meng Dai, and Xia Li.
Topologically inferring risk-active pathways toward precise cancer classification by directed random walk.

J R Nevins.
The Rb/E2F pathway and cancer.

Distinctive gene expression patterns in human mammary epithelial cells and breast cancers.

Sven Thiele, Luca Cerone, Julio Saez-Rodriguez, Anne Siegel, Carito Guziolowski, and Steffen Klamt.
Extended notions of sign consistency to relate experimental data to signaling and regulatory network topologies.
BMC bioinformatics, 16(1):345, jan 2015.